Technologies for the First Interstellar Explorer: Beyond Propulsion

Anthony Freeman and Leon Alkalai

Jet Propulsion Laboratory-California Institute of Technology

Thursday | 4 October | 2018

With a lot of help from JPL's A-Team

© 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.

MISSION PHASES

. ACCELERATE **OUT OF OUR SOLAR SYSTEM** SURVIVE CRUISE TO PROXIMA CENTAURI

DECELERATE ON **APPROACH**

ADJUST **TRAJECTORY** FOR **CLOSE ENCOUNTER**

AQUIRE SCIENCE DATA

VI. RETURN INFORMATION TO EARTH

FUNCTIONS

PROPULSION SURVIVAL SCIENCE

PROPULSION SURVIVAL SCIENCE

PROPULSION SURVIVAL SCIENCE

PROPULSION SURVIVAL SCIENCE

PROPULSION SURVIVAL SCIENCE

PROPULSION SURVIVAL SCIENCE

STARSHIP FUNCTIONS BY PHASE

PROPULSION

SURVIVAL

SCIENCE

COMMUNICATION

LAST POSSIBLE S/C CONFIG

LAUNCH (I) ACCELERATION (II) DECELERATION (III) APPROACH (IV)

ENCOUNTER (V)

MISSION PHASES

AND DECISION POINTS

In the Encounter Phase, our Explorer will essentially be on its own

© 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.

SUPPORT MISSION

EARTH

PRIMARY MISSION

GRAVITY LENS 550 AU

270,000 AU

WITH GRAVITY LENSING 1,000 x 1,000 pixels

TODAY

FULL ENCOUNTER

GOAL

Analogy is Hubble and New Horizons @ Pluto Key Question is: How much do we expect to learn before our Explorer arrives?

2018 California Institute of Technology. U.S. Government sponsorship acknowledged.

MISSION OPTIONS

HIGH

MINUTES

NO BRAKING
PASS BY 0.1-0.2 LIGHT SPEED

MEDIUM

HOURS

SLOW DOWN LIKE **NEW HORIZONS**

LOW

YEARS

ENTER ORBIT

Science Value increases as Relative Velocity slows

MISSION ENCOUNTER PHASES

© 2018 California Institute of Technology.
U.S. Government sponsorship acknowledged.

ACCELERATION (II)

APPROACH (IV)

ENCOUNTER (V)
DATA RETURN (VI)

TRANSFORMABLE SPACECRAFT

© 2018 California Institute of Technology.
U.S. Government sponsorship acknowledged.

© 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.

SUPPORT MISSION

EARTH SU

PRIMARY MISSION

GRAVITY LENS
550 AU

270,000 AU

DATA RETURN

OPTICAL COMM ENHANCED BY GRAVITATIONAL LENSING?
MORE CONVENTIONAL RF? —QUANTUM ENTANGLEMENT?

© 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.

*as suggested by John Brophy (A-Team)

Voyager I left our solar system in 2012

MISSION FUNCTIONS

Launched in 1977 (40 years ago!)
Current Speed 17 km/s
140 AU from the Sun

Downlink telemetry 16 bits/sec
Uplink telemetry 160 bits/sec
Onboard Computer Memory 70 kBytes

Power available 249 W Flight Software: FORTRAN/C

Imagine if we could upgrade Voyager to present-day technology levels?

voyager.jpl.nasa.gov

What upgrades might we apply?

- Technology trends to watch:
 - 3D Printing of large structures
 - 3D Printing of sensors and electronics
 - Artificial Intelligence
 - Genetic Programming
 - E-sails and Magnetoshells
 - Spacecraft Miniaturization

FLIGHT HARDWARE UPGRADES @ 4 LY

3-D PRINTER

MINERAL STOCKS

NEW COMPONENTS

FLIGHT HARDWARE UPGRADES @ 4 LY

3-D PRINTER

MINERAL STOCKS

NEW COMPONENTS

FLIGHT HARDWARE UPGRADES @ 4 LY

3-D PRINTER

MINERAL STOCKS

NEW COMPONENTS

Tap into the creative juices of the entire world through competitions to design upgrades using limited resources

FLIGHT SYSTEM UPGRADES @ 4 LY

3-D PRINTER

MINERAL STOCKS

NEW COMPONENTS

© 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.

SOFTWARE

FLIGHT SOFTWARE UPGRADES @ 4 LY?

Al Programming

- uses genetic algorithms coupled with a tightly constrained programming language that minimizes the overhead of its Machine Learning search space.

Genetic Algorithm Evaluation

Commands to generate say a new OS tested on Earth using identical configuration prior to upload

Genetic Algorithms

- A series of programming instructions are selected at random to serve as an initial chain of DNA.

Instruction set consists of just 8 basic commands:

Genome Functional Analysis and Grading

Survival of Fittest Selection

New Functions OffSpring Construction

At launch, the programmer for the approach phase is not born yet...

Acknowledgment: Becker, K., and Gottschlich, J., Al Programmer: Autonomously Creating Software Programs Using Genetic Algorithms, arXiv.org (2017)

Embedded Interpreter

© 2018 California Institute of Technology.

